Sabtu, 21 Agustus 2010

Cell-phone Network Technologies: 3G

3G technology is the latest in mobile communications. 3G stands for "third generation" -- this makes analog cellular technology generation one and digital/PCS generation two. 3G technology is intended for the true multimedia cell phone -- typically called smartphones -- and features increased bandwidth and transfer rates to accommodate Web-based applications and phone-based audio and video files.
3G comprises several cellular access technologies. The three most common ones as of 2005 are:
  • CDMA2000 - based on 2G Code Division Multiple Access (see Cellular Access Technologies)
  • WCDMA (UMTS) - Wideband Code Division Multiple Access
  • TD-SCDMA - Time-division Synchronous Code-division Multiple Access
3G networks have potential transfer speeds of up to 3 Mbps (about 15 seconds to download a 3-minute MP3 song). For comparison, the fastest 2G phones can achieve up to 144Kbps (about 8 minutes to download a 3-minute song). 3G's high data rates are ideal for downloading information from the Internet and sending and receiving large, multimedia files. 3G phones are like mini-laptops and can accommodate broadband applications like video conferencing, receiving streaming video from the Web, sending and receiving faxes and instantly downloading e-mail messages with attachments.
Of course, none of this would be possible without those soaring towers that carry cell-phone signals from phone to phone.

3G is a cell phone network protocol. Click here to learn about network protocols
for Smartphones.

Cell Phone Frequencies


In the dark ages before cell phones, people who really needed mobile-communications ability installed radio telephones in their cars. In the radio-telephone system, there was one central antenna tower per city, and perhaps 25 channels available on that tower. This central antenna meant that the phone in your car needed a powerful transmitter -- big enough to transmit 40 or 50 miles (about 70 km). It also meant that not many people could use radio telephones -- there just were not enough channels.
The genius of the cellular system is the division of a city into small cells. This allows extensive frequency reuse across a city, so that millions of people can use cell phones simultaneously.
A good way to understand the sophistication of a cell phone is to compare it to a CB radio or a walkie-talkie.
  • Full-duplex vs. half-duplex - Both walkie-talkies and CB radios are half-duplex devices. That is, two people communicating on a CB radio use the same frequency, so only one person can talk at a time. A cell phone is a full-duplex device. That means that you use one frequency for talking and a second, separate frequency for listening. Both people on the call can talk at once.
  • Channels - A walkie-talkie typically has one channel, and a CB radio has 40 channels. A typical cell phone can communicate on 1,664 channels or more!
  • Range - A walkie-talkie can transmit about 1 mile (1.6 km) using a 0.25-watt transmitter. A CB radio, because it has much higher power, can transmit about 5 miles (8 km) using a 5-watt transmitter. Cell phones operate within cells, and they can switch cells as they move around. Cells give cell phones incredible range. Someone using a cell phone can drive hundreds of miles and maintain a conversation the entire time because of the cellular approach.
  •   In a typical analog cell-phone system in the United States, the cell-phone carrier receives about 800 frequencies to use across the city. The carrier chops up the city into cells. Each cell is typically sized at about 10 square miles (26 square kilometers). Cells are normally thought of as hexagons on a big hexagonal grid
  • Each cell has a base station that consists of a tower and a small building containing the radio equipment. We'll get into base stations later. First, let's examine the "cells" that make up a cellular system.

' How Cell Phone Works

Millions of people in the United States and around the world use cellular phones. They are such great gadgets -- with a cell phone, you can talk to anyone on the planet from just about anywhere!
These days, cell phones provide an incredible array of functions, and new ones are being added at a breakneck pace. Depending on the cell-phone model, you can:
  • Store contact information
  • Make task or to-do lists
  • Keep track of appointments and set reminders
  • Use the built-in calculator for simple math
  • Send or receive e-mail
  • Get information (news, entertainment, stock quotes) from the Internet
  • Play games
  • Watch TV
  • Send text messages
  • Integrate other devices such as PDAs, MP3 players and GPS receivers
­But have you ever wondered how a cell phone works? What makes it different from a regular phone? What do all those terms like PCS, GSM, CDMA and TDMA mean? In this article, we will discuss the technology behind cell phones so that you can see how amazing they really are. If you are thinking about buying a cell phone, be sure to check out How Buying a Cell Phone Works to learn what you should know before making a purchase.
To start with, one of the most interesting things about a cell phone is that it is actually a radio -- an extremely sophisticated radio, but a radio nonetheless. The telephone was invented by Alexander Graham Bell in 1876, and wireless communication can trace its roots to the invention of the radio by Nikolai Tesla in the 1880s (formally presented in 1894 by a young Italian named Guglielmo Marconi). It was only natural that these two great technologies would eventually be combined.